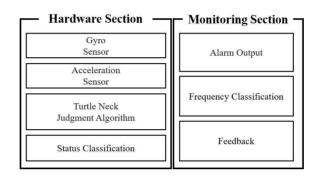

[프로젝트 명: 거북목 판별 모니터링 시스템]

인공지능응용학과

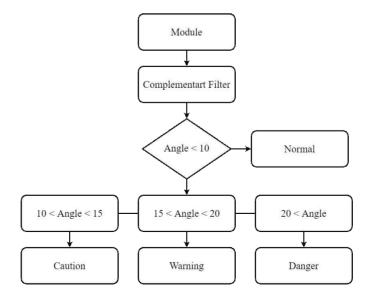
프로젝트 필요성

- 현대인의 고질병 중 하나인 거북목 증후군은 나이가 들면서 목과 척추 근육의 퇴행성 변화로 인해 많이 발병된다.
- 근래에는 스마트폰이나 컴퓨터를 장시간 사용하면서 생기는 경우가 많은데, 이때 무의식적으로 머리가 앞으로 숙어지는 자세를 오랫동안 유지하는 경우 거북목 증후군이 생길 수 있다.
- 건강보험심사평가원에 따르면 2015년에서 2019년까지 거북목 증후군으로 진료받은 환자 수가 190만명에서 224만 명으로 약 18% 증가하였다.
- 거북목 증후군으로 인해 근육이 과하게 긴장하는 상태가 되면 경추 통층, 두통, 근막통증이 발생할 수 있으며 올바른 자세를 취하고 있을 때도 이러한 통증이 지속된다.
- 통증이 지속될 경우 업무 및 수면 방해로 이어지고 일상생활에도 문제가 생겨 지속적인 스트레칭을 통해 잘못된 자세 습관을 스스로 교정하고 예방해야한다.
- 하지만 무의식적으로 잘못된 자세를 취하는 경우가 많고 자신의 자세를 스스로 인정하고 교정하는 것은 쉽지 않기 때문에 사용자의 잘못된 자세를 인지할 수 있도록 알려주는 교정 시스템이 필요하다.


〈목디스크 질환 관련 연령별 인구 10만명당 진료인원〉

[출처 : 건강보험심사평가원]

2) 동작순서도


■ 구성도

- 구현된 거북목 판별 모니터링 시스템의 하드웨어부는 6축 자이로 가속도(MPU-6050)를 사용하여 사용자의 목 각도 를 측정한다.
- 측정된 데이터는 거북목 판별 알고리즘을 통해 거북목을 판별하고 블루투스를 통해 모니터링부에 전송된다.
- 모니터링부는 실시간 모니터링이 가능하며 사용자에게 알림을 주어 잘못된 자세를 경고하여 자세를 인지하고 교 정할 수 있도록 도음울 준다.

■ 거북목 판별 알고리즘

- 목의 각도를 추정하기 위하여 자이로, 가속도 센서를 사용하여 목의 각도 데이터를 측정하였다.
- 바른자세와 거북목 자세를 지속적으로 번갈아 가면서 반복하게 되면 데이터의 오차가 발생할 수 있기 때문에 상 보필터를 적용하였다.
- 상보필터를 통해 측정된 각도 값이 10도 미만이라면 정상 상태, 10도에서 15도 사이라면 주의 상태, 15도에서 20도 사이라면 경고 상태, 20도 이상이라면 심각 상태로 판별을 한다.
- 판별된 데이터는 블루투스를 통해 모니터링 부로 전송된다.

3) 준비 부품

센서모듈	센서명	센서	역할
	MPU-6050	6축 자이로, 가속도 센 서	각도 데이터 측정
	HC-06	블루투스 모듈	데이터 전송
	Raspberry Pi4	라즈베리파이 메인보드	모니터링 구현
	Arduino UNO R3	아두이노 메인보드	MPU-6050을 사용하기 위한 메인보드
- 3.70 \$32248 3.70 \$500mh + Made In China	Lithium polymer battery	배터리	전원 공급
	breadboard	핀 연결	하드웨어 구현에 사용 되는 브레드보드
SanDisk Ultra 64 GB SET © A1	MicroSDHC	메모리 카드	모니터링 구현에 사용 되는 SD 메모리 카드
	1602 I2C LCD	LCD	상태 출력으로 실시간 모니터링을 위한 LCD

4) 핀맵

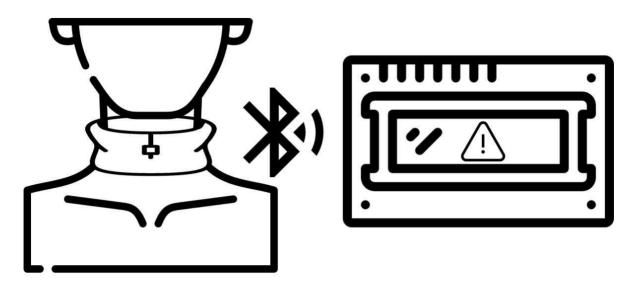
센서모듈	순번	역할	연결 핀 번호(아두이노)
LCD	1	VCC	5V power (4)
	2	GND	GND (6)
	3	SDA	GPIO2 (3)
	4	SCL	GPIO3 (5)
MPU-6050	1	VCC	5V
	2	GND	GND
	3	INT	D2
	4	SDA	A4
	5	SCL	A5
Bluetooth	1	VCC	5V
	2	GND	GND
	3	RX	D7
	4	TX	D8

5) 통신 프로토콜

■ 아두이노에서 라즈베리파이

Command	동작	데이터	예시
SoftwareSerial	시리얼 통신을 위한		
mySerial(TX, RX);	객체선언		
mySerial.begin(9600);	블루투스 시리얼	연결주기	
mySerial.println(angle);	각도에 따른 문구 출력	String	"Warning"

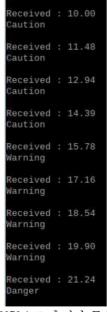
6) 시나리오 구현 방법


■ 거북목 판별

- 하드웨어는 밴드 형태로 제작하였고 MPU-6050, HC-06, Arduino로 구성되어있다.
- 밴드 형태의 하드웨어를 통해 실시간으로 사용자의 목 각도를 측정하여 각도에 따른 자세 판별을 모니터링부에 전송된다.

■ 잘못된 자세 경고

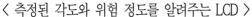
• 모니터링부에서는 전송받은 자세 판별 데이터를 통해 사용자에게 LCD로 메시지를 띄운다.

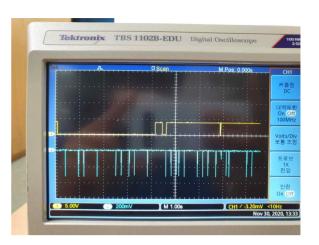

■ 개념도

7) 실험결과

■ MPU6050

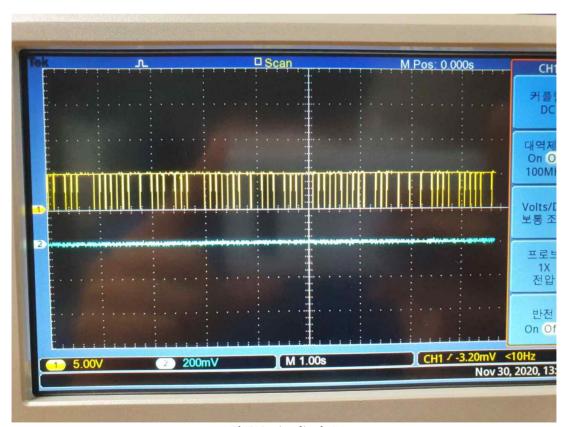
• MPU-6050은 사용자의 목 각도 데이터를 측정하기 위해 사용됐으며, 아두이노 우노 보드의 디지털 2번 핀과 아날 로그 4번, 5번을 사용했다.


〈 MPU-6050(파랑) 작동 〉


LCD

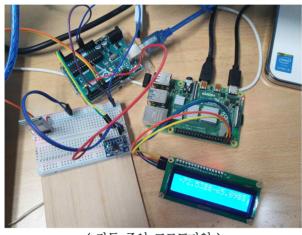
• LCD는 MPU-6050으로 판별된 사용자의 자세를 실시간으로 알려주기 위해 사용되었다.

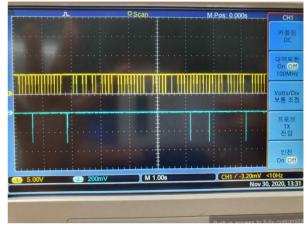
• 라즈베리파이의 GPIO 3, 5번 핀을 사용했다.



〈LCD(노랑), MPU6050(파랑) 작동 〉

■ 블루투스


• 블루투스는 MPU-6050에서 측정한 각도 값을 라즈베리파이로 전송하기 위해 사용되었다. 아두이노 우노보드의 디지털 7번, 8번핀을 사용했다.


〈 블루투스(노랑) 작동 〉

■ 프로토타입 제작

- 센서와 모듈을 통해 프로토타입을 제작했다.
- 목 밴드에 부착하기 전 아두이노 우노 R3 보드를 사용해서 기능만을 구현했다.
- 블루투스 모듈과 MPU-6050이 부착된 브레드보드를 기울이면 측정된 각도와 위험 정도가 라즈베리파이로 전송되어 LCD에 표기된다.

〈 작동 중인 프로토타입 〉

〈 블루투스(노랑)과 MPU 6050(파랑)의 통신 〉

■ 거북목 판별 시스템 실사용

- 거북목 각도 측정값 수신부는 목 밴드 위에 부착할 수 있게끔 만능 기판 위에 아두이노 미니, 블루투스 모듈, MPU 6050을 납땜하여 소형화했다.
- 구현된 시스템으로 피실험자 5명을 대상으로 하드웨어 착용 후 측정 값을 실험해 보았을 때, 개인마다 조금 씩의 차이는 있었지만 평균 98.25%의 정확도를 확인할 수 있었다.

〈 거북목 판별 시스템 착용 사진 〉

		Monitoring System			
		Normal	Caution	Warning	Danger
posture	Normal	100	0	0	0
	Caution	0	98	2	0
	Warning	0	2	97	1
	Danger	0	0	2	98
Sum.		100	100	101	99
Avg.		98.25%			

〈 자세별 정확도 〉