Instructor(s): LEE, Young Sil / Ph.D. Classroom: TBD
Office: #804, U-IT building Class Time: TBD
Phone: - Office Hours: 09-18
Email: youngsil.lee0113@gmail.com

Course Description:
This course is an introduction to the theoretical foundations of computer science. These form the basis for a more complete understanding of proficiency in computer science.

Course Goals & Objectives:
At the conclusion of this course, the successful (passing) students will be able to
- Understand the characteristics and methods of operation of component parts of computers
- Describe, explain and use various different methods of representing data for use in computer systems
- Comment critically on ethical issues arising from the use of computer solutions

Course Outline:
- Week 1 Course Introduction
 - Introduction & Syllabus overview
- Week 2 Information representation
 - Number representation
 - Images
 - Sound
 - Video
 - Compression techniques
- Week 3 Communication and Internet technologies
 - Networks
 - IP addressing
 - Client- and Server- side scripting
- Week 4 Hardware
 - Input, output and storage devices
 - Main memory
- Logic gates and logic circuits

- **Week 5 Processor fundamentals**
 - CPU architecture
 - The fetch-execute cycle
 - The processor’s instruction set
 - Assembly language

- **Week 6 System software**
 - Operating system
 - Utility programs
 - Library programs
 - Language translators

- **Week 7 Security, privacy and data integrity**
 - Data security
 - Data integrity

- **Week 8 Mid-Term Week (mid-term exam)**

- **Week 9 Ethics and ownership**
 - Ethics
 - Ownership

- **Week 10 Database and data modelling**
 - Database Management System (DBMS)
 - Relational database modelling
 - Data Definition Language (DDL) and Data Manipulation Language (DML)

- **Week 11 Algorithm design and problem – solving**
 - Algorithms
 - Structure chart
 - Corrective maintenance
 - Adaptive maintenance

- **Week 12 Data representation**
 - Data types
 - Arrays
 - Files

- **Week 13 Programming**
 - Programming basics
 - Transferable skills
 - Selection
 - Iteration
 - Built-in functions
 - Structured programming
- **Week 14 Software development**
 - Programming
 - Programming testing
 - Testing strategies

- **Week 15** Final Week

Textbook(s) – Course materials and announcements may be distributed in class, or posted on the course website.
- Required: TBD
- Recommended: TBD

Class Website: e-Class

Course Assignments & Grading:

- **Exams:**
 - There will be a mid-term exam, containing a set of questions, in week 8 of the lecture period (30% of final grade) and a final exam in week 15 (30% of final grade). The two exams count for 60% of the total final course grade.
 - Exam dates listed above are tentative and subject to change. Exact dates will be announced in class at least one week in advance. Make-up exams will not be given unless you notify me prior to the scheduled time and have a legitimate excuse for your absence. All exams will be closed-book, closed-notes, with no calculators allowed.

- **Attendance:**
 - Attendance is mandatory (see the Course policy)

- **Assignments:**
 - All assignments must be turned in on the due date. Late assignments will not be accepted.
 - All written assignments should be typed, double-spaced, using 12-point font. No hand-written assignments will be accepted.
 - We will use e-class on occasion for posting lecture announcements.

- **Grading Scale:**
 - 91-100% = A+
 - 81-90% = A
 - 71-80% = B+
 - 65-70% = B
 - 61-64% = C+
 - 55-60% = C
 - 50-54% = D
Grading Policies:
Your course grade will be based on the following breakdown:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments</td>
<td>30%</td>
</tr>
<tr>
<td>Attendances</td>
<td>10%</td>
</tr>
<tr>
<td>Midterm Exam (usually 8th week, in class)</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam (usually 15th week)</td>
<td>30%</td>
</tr>
</tbody>
</table>

Course Policies:
- Attendance: Events such as illness, injury, or job or graduate school interviews, are expected to occasionally prevent students from attending lectures. However, students who regularly fail to attend 3 lectures will be penalized (see the Grading policy). You are responsible for all material presented while you are absent.
- Academic Misconduct Policy