

2팀

20190420 서지원 20180469 오원철 20190440이경민 20200048김서영 20210122 정송연 contents

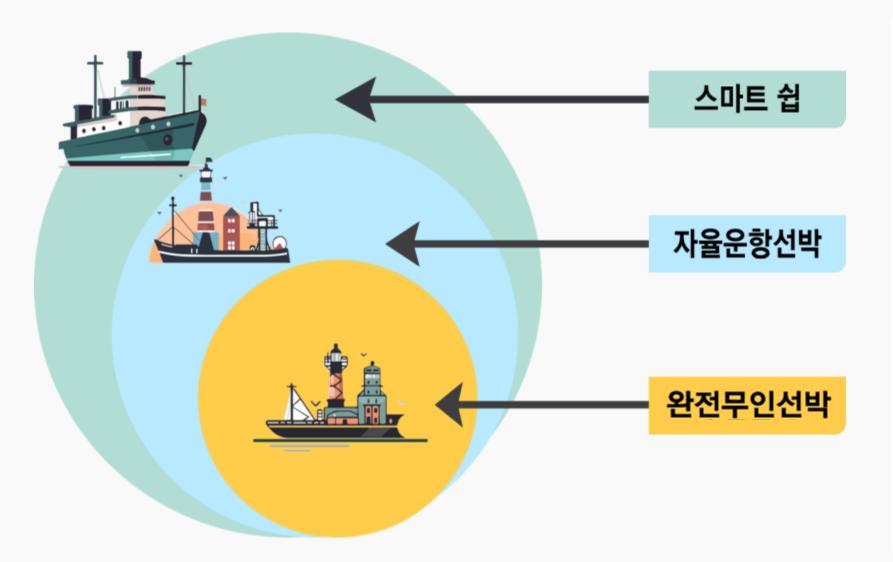
1. 자율운항선박의 필요성

1. 자율운항선박의 필요성

자율 운항 선박이 만들어진다면 해운 운송 서비스 향상을 가져올 뿐만 아니라 해상 안전 및 해양 환경오염을 절감하는데 상당한 기여할 것으로 예상한다.

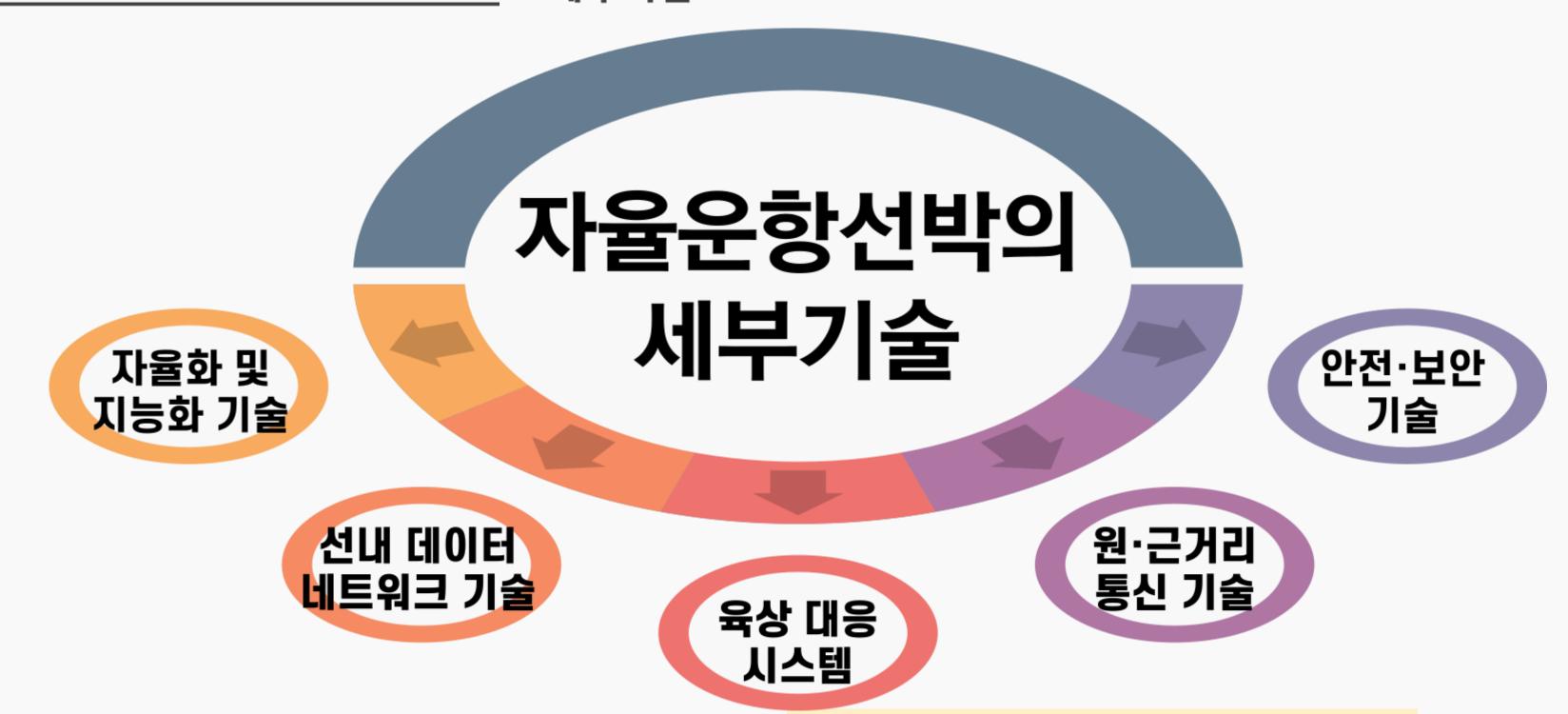
2. 자율운항선박이란

2. 자율운항선박이란 : 정의

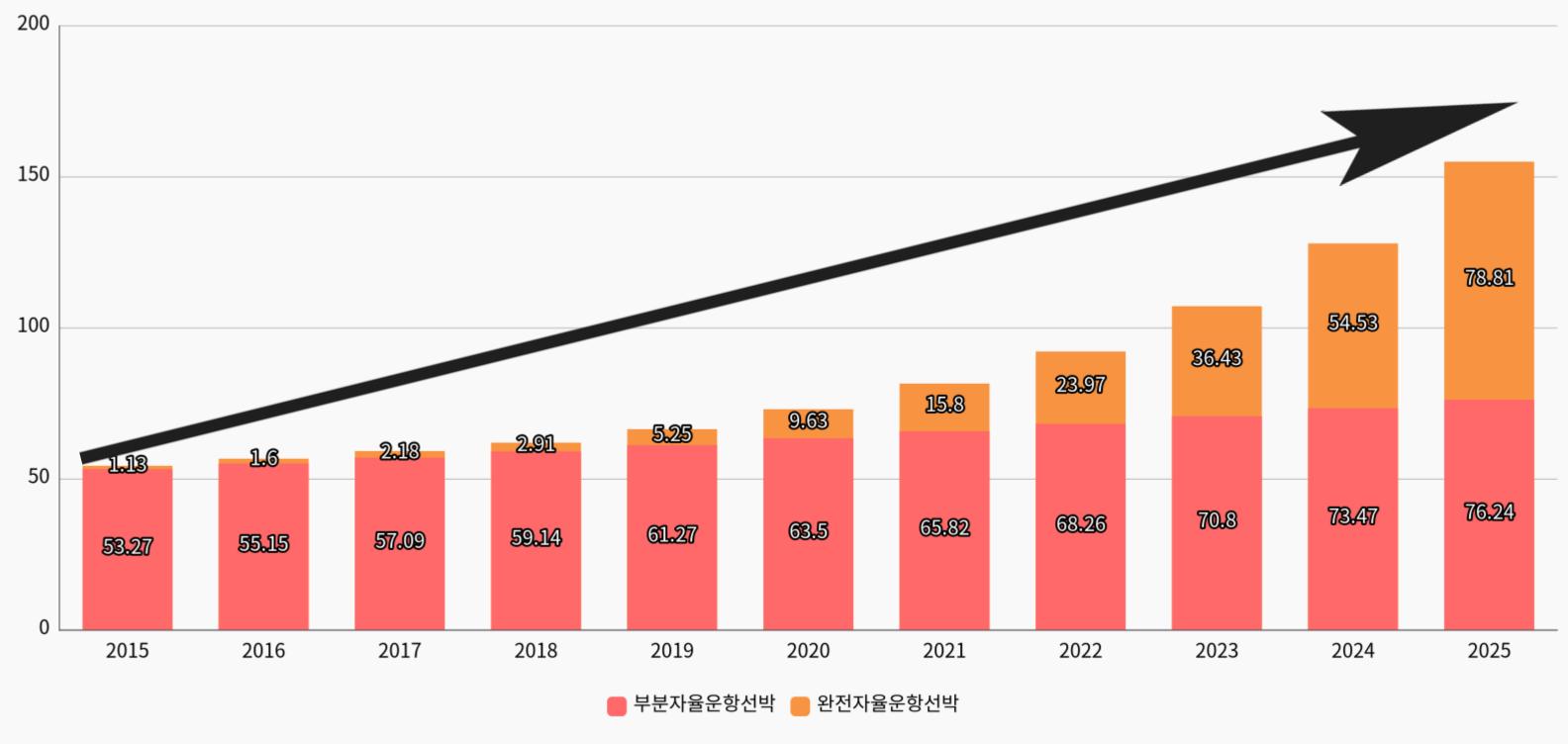


(국제해사기구IMO 정의)

MASS(Maritime Autonomous Surface Ship) 수면 상에서 사람의 개입 없이 또는 최소한의 개입으로 운항하는 선박


2. 자율운항선박이란 : 정의

단계		수준
	Level 1	부분적 <u>자율운항지원</u> 자동화 단계 및 선원의 의사결정을 지원하 는 기능을 가진 선박
	Level 2	선원이 승선, 원격제어선박, 시스템 고장 시 선원이 직접대응
	Level	선원이 <u>비승선</u> , <u>원격제어선박</u> , 시스템 고장을 대비하여 <u>Stand</u> -by 시스템 구축
(1,0)	Level 4	선박 스스로 의사결정을 하는 완전무인선박


출처 : 국제해사기구 (IMO)

2. 자율운항선박이란 : 세부기술

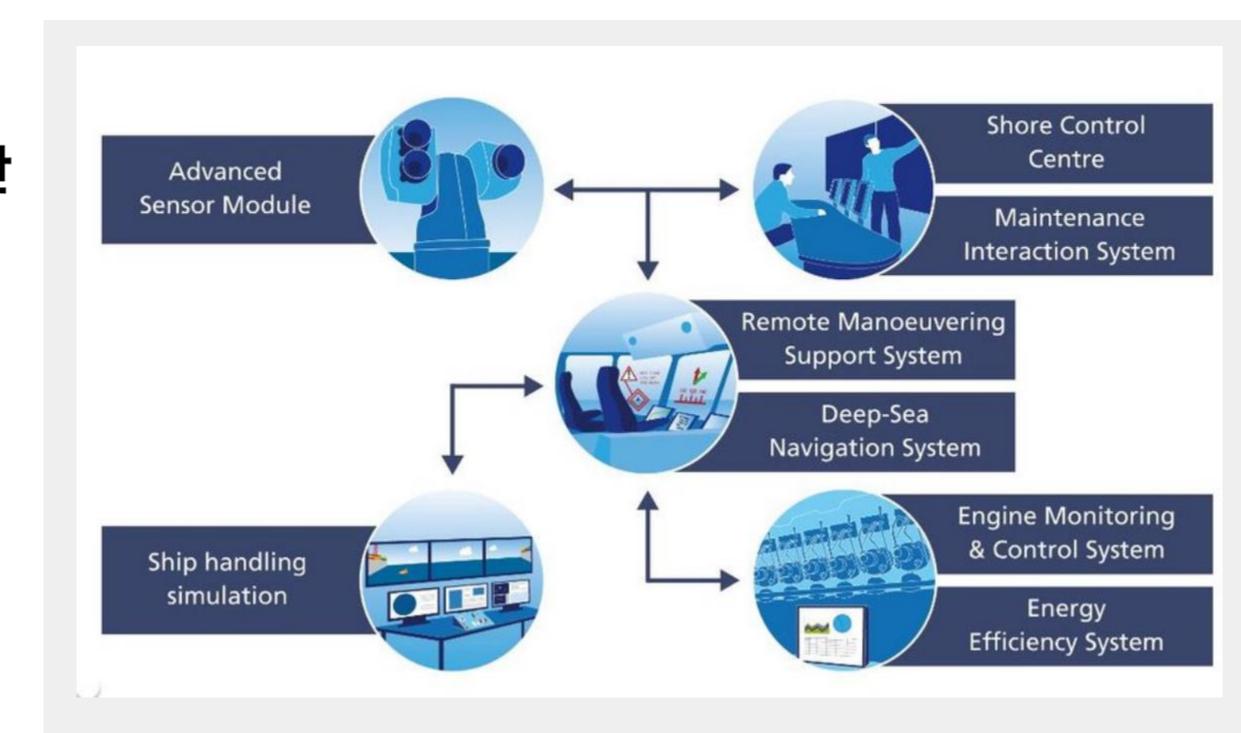
→ 자율운항선박의 핵심기술은 「자율화 및 지능화 기술」이며, 이외 데이터 네트워크 기술, 육상대응 시스템 기술, 통신 기술 등이 필요

2. 자율운항선박이란 : 시장규모

세계 자율운항선박 시장규모 전망(단위: 억달러, 자료: National Marine Electronics Association) 한국과학기술기획평가원 안선명, 김선재 '자율운항선박' 2020.06

3. 해외 현황 및 사례

3. 해외 현황 및 사례: 해외 자율운항선박 기술 개발 동향

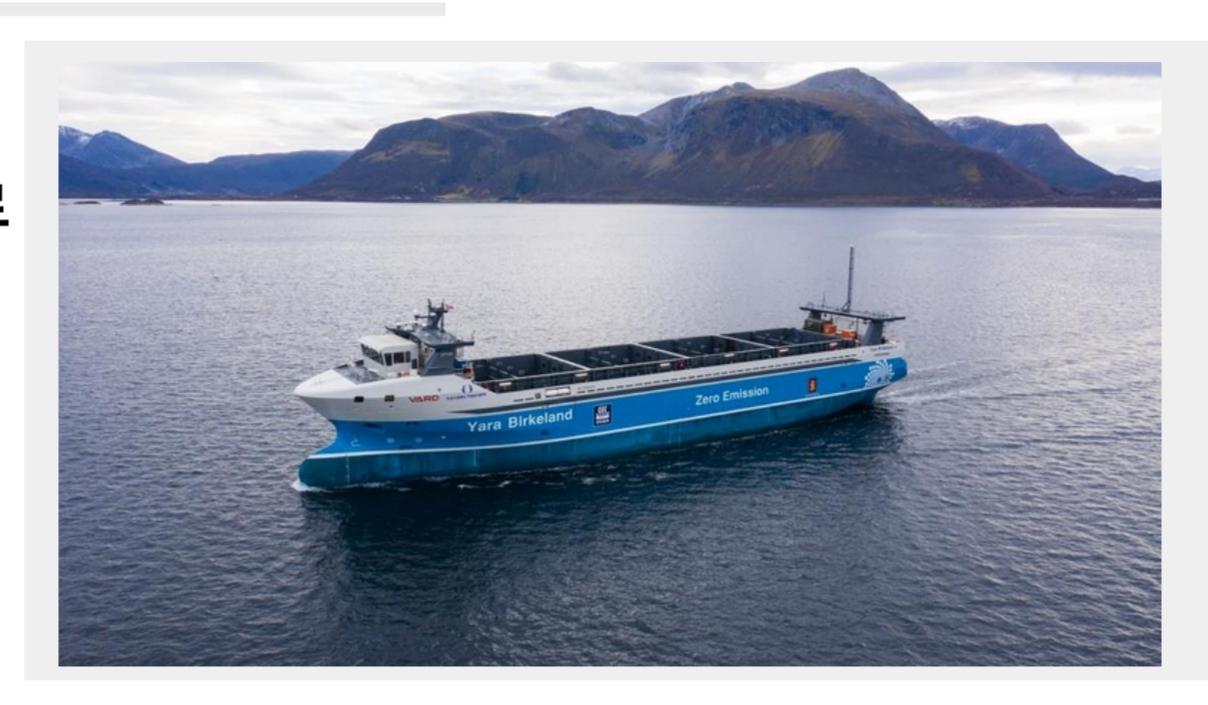

□해외 개발현황 및 수준						
구분	Yara BirkelProject	ASKO Project (가칭)	AEGIS Project	DFFAS Project	Falco Ferry	
관련 기관	선주:Yara International 조선소:Vard Brattvag	선주: ASKO 조선소: Cochin Shipyard Limited(인도국영)	Port of AALBORG CARGOTEC GRIEG CONNECT 등	NYK Japan Marine Science Inc MTI Co.(총 22개 기업)	선사: Rolls-Royce 운항사: Finferries(국영)	
비용	약 290억원 (정부 지원금 167억원)	비공개 (노르웨이 정부 지원금 130억원)	100억 규모(EU 지원금)	비공개	비공개 ("ONE SEA" 의 지원 받음)	
규모	최대적재량: 3,200 DWT 선박크기:120TEU 80m(Length) 15m(Width) 12m(Depth) 배터리용량:7.0~9.0 MWh 최대속력:12노트(22km/h) 항해속력:6노트(11km/h)	종류: Ferry 선박길이: 67m 배터리 용량: 1,846kWh *2대 건조 예정	유럽내 항구 도시 및 항구 Vordingborg,Aalborg, Rotterdam, Flanders 등	컨테이너 선	종류: Car Ferry 선박길이: 53.8m	
운항	근해 Porsgunn ↔ Brevik Porsgunn ↔ Larvik	근해 Moss Port ↔ Horten Port	근해 Rotterdam ↔ Ghent	일본 근해 나고야 ↔ 요코하마	핀란드 근해 Parainen ↔ Nauvo (약 1664m)	
수준	부분 자율운항 (최소 필요 선원 탑승) *추후 완전 무인화 예정	부분 자율운항 (최소 필요 선원 탑승) *추후 완전 무인화 예정		부분 자율운항 (최소 필요 선원 탑승 및 육 상 제어 사용)	부분 자율운항 (제한적인 원격제어 사용)	
주요 내용	-20.11.27 건조 및 인도 완료 -2020년 최소선원 운항 시작후 2022년 무인화를 통한완전 자율운항 운용 계획-노르웨이 Horten 등 시험구역에서 테스트 예정-배기가스 저감을 통한 저탄소선박 상용화 목표	-2022년 인도 예정 -위험성 평가 및 신뢰성, 검증을 위해 IMO 1455 지침을 따름 -육상 운송 대체를 통해 연간 5000톤 규모의 CO ₂ 저감 계획 -2026년까지 탄소 배출 Zero를 목표	-3년간 개발 및 실증예정 -유럽의 항구를 이용하는 3가지 실증 시나리오가 존재(단거리 운송 및 육·해상 복합 운송 등) -유럽 내 수상 운송의 현대화, 신뢰성 및 경쟁력 향상 목표 -운송 시 발생하는 CO ₂ 및 대기 오염 물질 배출 경감 기대	- 2021년 장거리 실증 시험 수행 예정 - 2025년까지 일본 내 해운 사업에 MASS를 도입하는 것을 목표로 함 - 위험 요소 파악, 데이터 분석 등을 통해 사고 위험 도를 실시간으로 시각화 하는 소프트웨어 개발 중	-단거리 레이더, 주야간 카 메라 및 라이다 장착 - 시연 전 400시간의 해상 테 스트 진행 - Return 시 50Km 떨어진 원 격제어센터에서 원격제어 시행함 -후속 연구 프로젝트인 "SYAN" 에 착수함	

출처:

자율운항선박기술개발사업 통합사업단 홈페이지

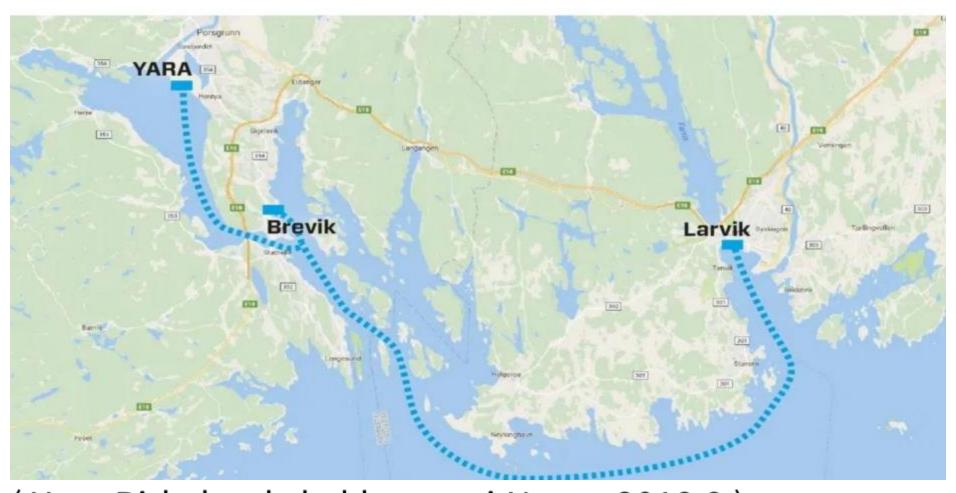
해외 현황 및 사례 EU: MUNIN 프로젝트

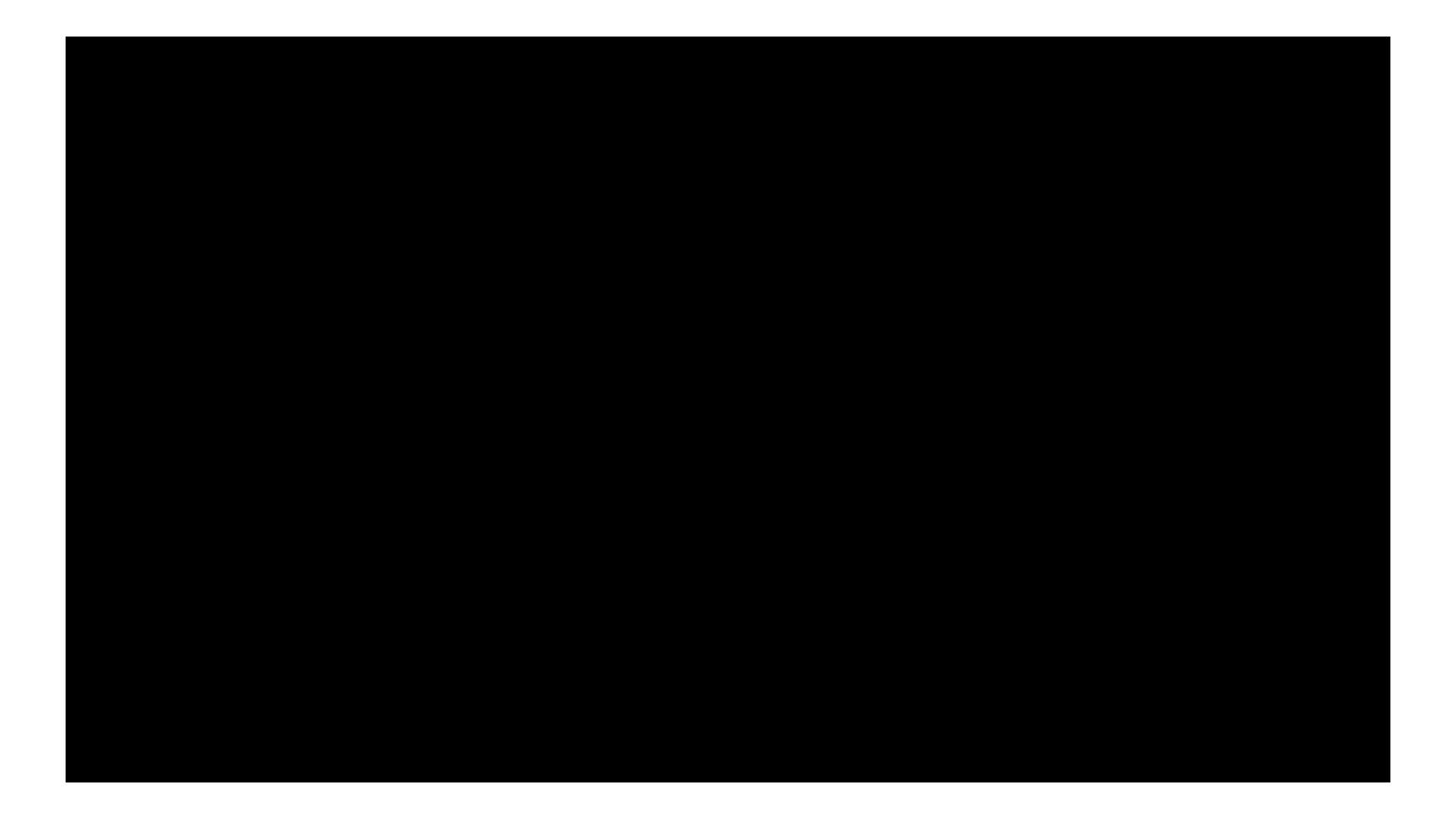
- 무인 자율운항선박에 대한 최초의 대규모 연구
- →자율운항선박의 개념화
- →경제적 가치 확인


해외 현황 및 사례 노르웨이: ReVolt 프로젝트 (100TEU)

- 100 해리 이내의 운용범위
- 소형 무인 컨테이너 선박

해외 현황 및 사례 노르웨이 : YARA Birkeland 프로젝트


실제 자율운항선박을
 건조하여 상업적인 목적으로
 활용하기 위한 프로젝트


해외 현황 및 사례 노르웨이 : YARA Birkeland 프로젝트 (120TEU)

기대사항

- -질소산화물과 이산화탄소 배출을 감소
- -도로안전 개선
- -대기오염과 교통 소음감소

(Yara Birkeland skal bygges i Norge 2018.8)

해외 현황 및 사례 일본 : SSAP / MEGURI 2040 / DFFAS+ 프로젝트

해외 현황 및 사례 일본 : 미카게 -> 정부사업 (메구리+몰)

無人運航船プロジェクト MEGURI 2040 ②②グ

Verification testing of fully autonomous technologies using coastal container vessels and car ferries

Designing the Future of Full Autonomous Shipping: Grand design drawn by diverse specialists

Development of fully autonomous amphibious driving technology: Yanba Smart Mobility

Fully autonomous navigation at Sarushima, Yokosuka

4. 국내 현황 및 사례

4. 국내 현황 및 사례: 자율운항선박 기술개발 사업 통합사업단

국내 현황 및 사례 HiNAS / SAS / DS4

01

HD 현대 HiNAS

*이접안지원시스템과 디지털 트윈 선박 플랫폼 개발

*25만 톤급 벌크선

*2단계 자율운항 솔루션 상용화 성공

02

삼성중공업 SAS

*세계 최초로 자율운항선박 간 충돌회 피 기술 실증 성공 *15,000TEU급 대형 컨테이너선 SAS+SVESSEL탑재 *거제-제주-가요슝항 자율운항기술 실증 완료 03

대우조선해양 DS4

* HMM과 공동연구개발을 통해 스마트십솔루션 DS4 를 개발

자율운항선박 개발 주요국과 대한민국 사이의 경쟁력 비교

유럽: 설계 및 운용 프레임워크

미국: 상황인식 및 제어기술

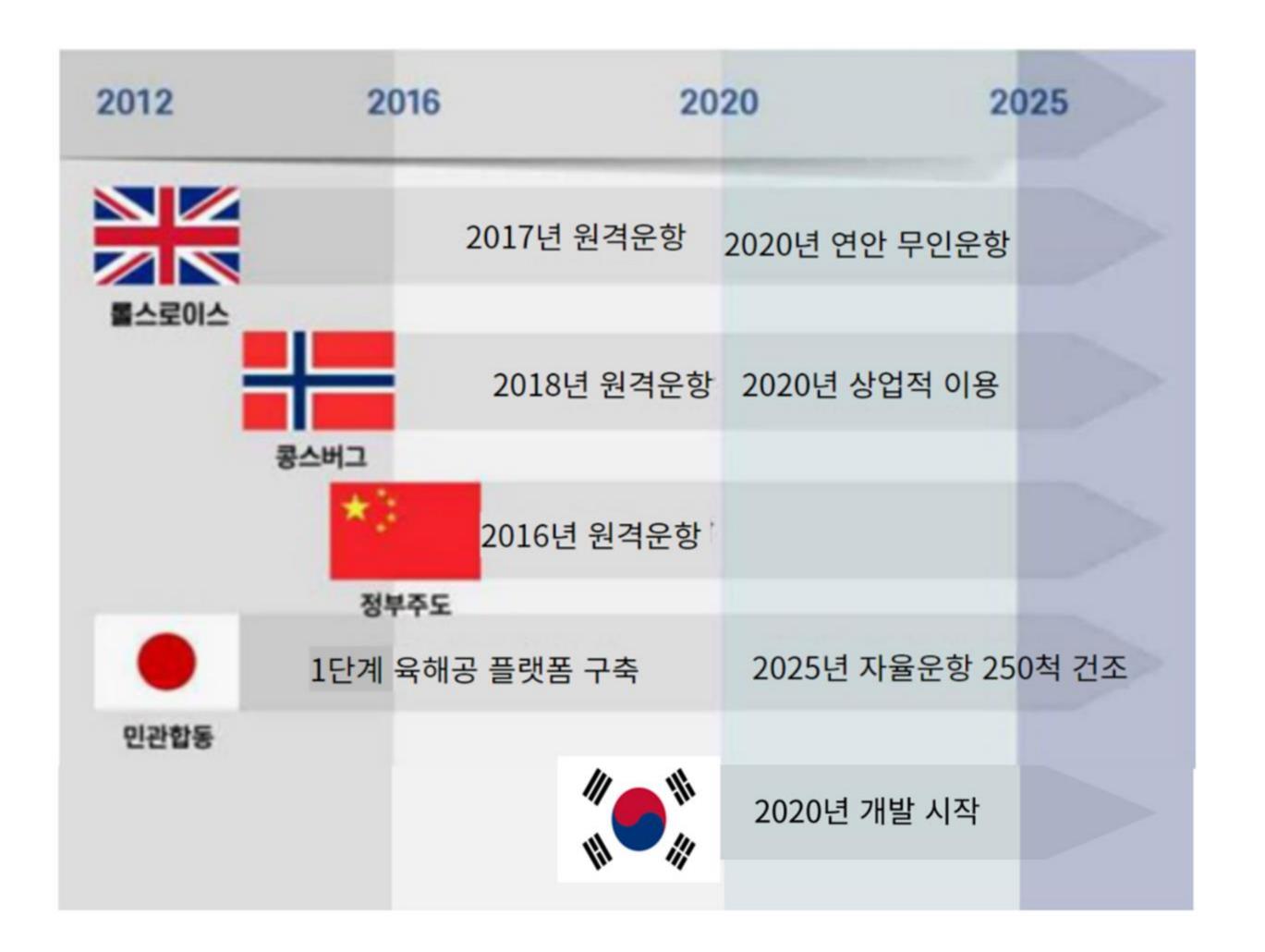
일본 : 선내 통신 표준 선도

중국: Test-bed 검증기술

호주: 자율도와 제어 수준 제시

VS F

수동적 대응 Follower


5. 해결 과제 및 시사점

5. 해결 과제 및 시사점

해결 과제 1. MOU를 통한 고부가가치 사업 확대

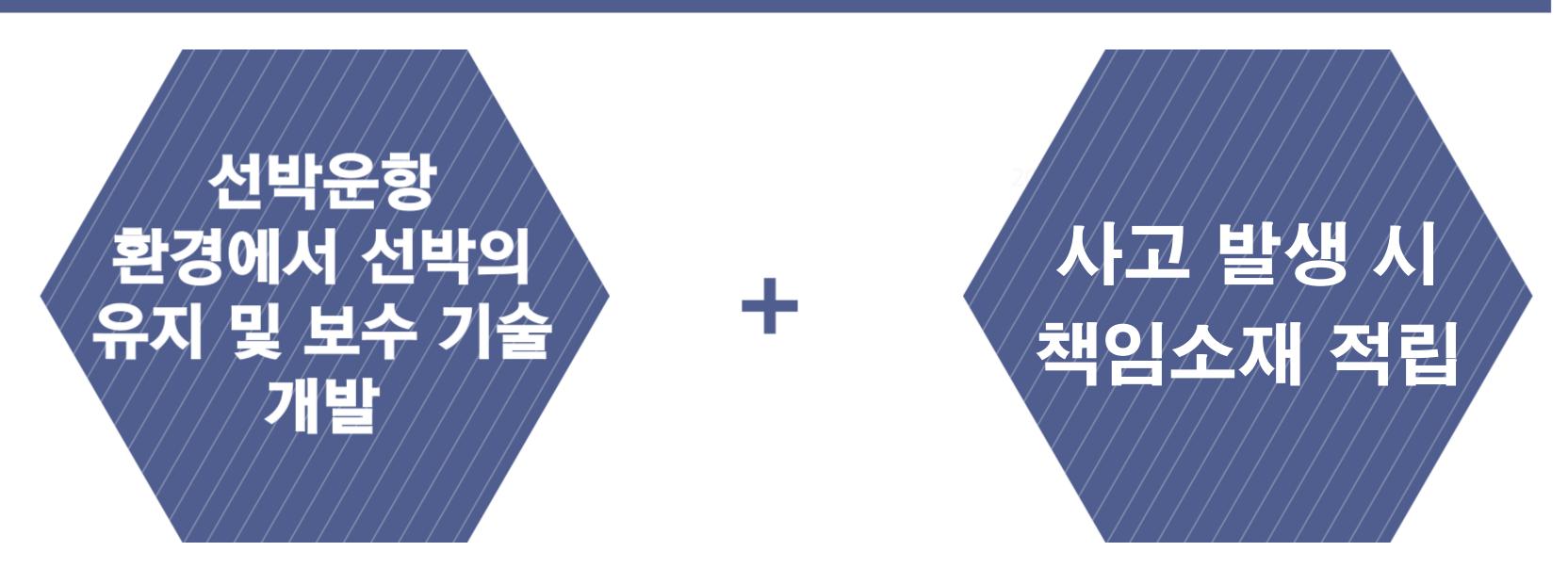
경제적이고 안전한 미래 항해는 핵심 장비·SW경쟁력이 관건

신뢰할 수 있는 해양 기자재 업체 부족 소프트웨어의 신뢰도 미흡

자율운항선박
전문 솔루션 강소 업체 가 국내에서도 육성될 수 있도록 저변 마련 필요

→ 한국-노르웨이 협력을 통한 고부가가치 사업 육성

해결과제 2.정부의 국제표준화 주도 및 공공 빅데이터 제공 필요


해결책

1. 자율운항선박 테스트베드 해역 조성

2.공공 빅데이터를 가공해 무료로 제공

5. 해결 과제 및 시사점

정부와 기업 차원의 노력

참고문헌

논문

- 한성훈, 송영조 자율운항선박을 둘러싼 현황과 법적과제. 한국 법정책학회. 법과 정책 연구 제 22권 제1호
- 한국산업은행 자율운항선박 정의 및 기술 동향
- KOSEN Report 2021 '노르웨이의 자율운항선박 기술 동향 / 국내외 자율운항 선박 최근 동향과 시사점
- GT 글로벌 산업기술 시장동향 '유럽 자율운항 선박 기술개발 동향
- TTA 저널 유영호 스마트 자율운항선박의 기술개발 현황과 과제
- SSAP Dr.hideyuki Ando Activities of Smart Ship Application Platform Project
- 선박해양플랜트연구소 여동진 미래 조선/해운 산업 선도를 위한 자율운항선박 기술

기타

https://enterprise.kt.com/bt/dxstory/640.do

http://www.kongje.or.kr

http://www.kmoumedia.com

자율운항선박기술개발사업 통합사업단 (kassproject.org)

https://www.nippon-foundation.or.jp/en/what/projects/meguri2040

http://m.monthlymaritimekorea.com/news/articleView.html?idxno=31907

https://www.e4ds.com/sub_view.asp?ch=11&t=0&idx=14534

https://www.mol.co.jp/en/pr/2022/22007.html

Yara Birkeland | The first zero emission, autonomous ship | Yara International

소감 및 역할분담

서지원 (20190420)	팀장, 자료조사, 발표	미래의 대한민국이 글로벌시장을 선도하기 위해서 어떤 노력을 해야할지 더 고민하는 시간이 되었 고 국내외 자율운항선박 동향을 분석하고 시사점을 제고하고 해결책을 도출하며 빠른 시일내에 세 계를 선도하는 고부가가치 산업으로 성장했으면 좋겠다는 바람이 생기는 중요한 시간이었습니다.
오원철 (2018046)	자료조사	4차산업혁명시대에 걸맞는 자율운항선박은 물류혁명이라고 느낄 수 있는 시간이였고, 발전과정에 함께 할 수 있는 시간을 가지게 되어서 뜻깊었습니다. 이러한 과정을 거쳐서 대한민국이 해운항만 물류를 선도했으면 좋겠습니다.
이경민 (20190440)	자료조사	안전, 경제, 환경 등 다양한 측면에서 강점을 가지는 자율운항 선박기술은 미래 항만 물류분야의 핵 심이 될 것이며 이번 조사를 통해 위 기술의 현시점을 알아보면서 해운산업변화에 대응 하기위해 생각을 정리해보는 좋은 시간이었습니다.
김서영 (20200048)	자료조사	이번 사례분석 경진대회를 통해 국내외의 자율운항선박에 대한 정보를 알 수 있었습니다. 이전에는 선박연료에 대한 친환경성만 고려했었는데 이번 자료조사를 통해서 자율운항선박으로 바꿈으로써 스마트화와 친환경을 동시에 이루어낼 수 있음을 알았고, 앞으로 조선산업이 우리나라의 해운항만 물류를 이끌어 갈 수 있는 중요한 산업임을 알게 되었습니다.
정송연 (20210122)	자료조사, PPT 제작	자율운항선박에 대해 연구하며 현재 대한민국이 선박시장을 주도하고 있지만 아직 자율운항선박 부분에서는 정부 차원의 개발이 늦어지고 있다는 생각이 들어 아쉬웠습니다. 미래 해운산업의 주도 권을 가져오기 위하여 자율운항선박 개발에 더욱이 힘 써야겠다는 생각이 들었습니다. 전문적인 전 공 지식 함양을 도와준 두 달 동안 함께 힘써준 팀원들께 감사합니다!

